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Solve Any

System Design Interview Question

The 8-part RESHADED method:

1. Requirements

2. Estimation

3. Storage schema (optional)
. High-level design

. APIs

Detailed design

. Evaluation

Step 2: Estimation
Estimate hardware & infrastructure
needed to implement at scale

Step 1: Requirements
Gather functional &
non-functional requirements

Consider:
« System goals
« Key features
« System constraints
« User expectations

Consider requirements for:
« Number of servers
« Daily storage
« Network
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Step 3: Storage schema (optional)*
Articulate data model
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Define:
« Structure of data
« Tables to use
« Type of fields in tables
« Relationship between tables (optional)
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. Distinctive component/feature

Building Blocks Glossary:

*Relevant when you:
« Expect highly normalized data
« Will store different parts of data in various formats

Domain Name System: Maps domain names to IP
addresses.

Load Balancers: Distributes client requests among
servers.

Databases: Stores, retrieves, modifies, & deletes
data.

Key-Value Store: Stores data as key-value pairs.

Content Delivery Network: Distributes in-demand
content to end users.

Sequencer: Generates unique IDs for events &
database entries.

Service Monitoring: Analyzes system for failures &
sends alerts.

Distributed Caching: Stores frequently accessed
data.

Distributed Messaging Queue: Decouples
messaging producers from consumers.

Publish-Subscribe System: Supports asynchronous
service-to-service communication.

Rate Limiter: Throttles incoming requests for
services.

Blob Store: Stores unstructured data.

Distributed Search: Returns relevant content for
user queries.

Distributed Logging: Enables services to log events.

Distributed Task Scheduling: Allocates resources to
tasks.

Sharded Counters: Counts concurrent read/write
requests.

« Face performance & efficiency concerns around storage

Step 4: High-level design

« Build high-level design

» Choose building blocks to meet functional
requirements

For each, identify:
» How they work
« Why they're needed
« How they integrate
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This layered visual shows dependencies between
building blocks. Blocks in lower layers support
those above.

Step 5: Apis

Translate functional requirements into
API calls

E.g.:
» Requirement: Users should be
able to access all items
« API call: GET /items

Step 6: Detailed design

« Improve high-level design

« Consider all non-functional
requirements & complete
design

Step 7: Evaluation

« Evaluate design against
requirements

« Explain trade offs & pros/cons
of different solutions

» Address overlooked design
problems

(8%) Distinctive
component/feature
Discuss a distinctive feature that
meets requirements
« E.g. Concurrency control in
high-traffic apps

*Timing varies. Best done after
completing design (E.g. Step 6 & 7)



