educative

Solve Any

System Design Interview Question

The 8-part RESHADED method:

1. Requirements

2. Estimation

3. Storage schema (optional)
. High-level design

. APIs

Detailed design

. Evaluation

Step 2: Estimation
Estimate hardware & infrastructure
needed to implement at scale

Step 1: Requirements
Gather functional &
non-functional requirements

Consider:
« System goals
« Key features
« System constraints
« User expectations

Consider requirements for:
« Number of servers
« Daily storage
« Network

N

Step 3: Storage schema (optional)*
Articulate data model

N o O

Define:
« Structure of data
« Tables to use
« Type of fields in tables
« Relationship between tables (optional)

(0 0)

. Distinctive component/feature

Building Blocks Glossary:

*Relevant when you:
« Expect highly normalized data
« Will store different parts of data in various formats

Domain Name System: Maps domain names to IP
addresses.

Load Balancers: Distributes client requests among
servers.

Databases: Stores, retrieves, modifies, & deletes
data.

Key-Value Store: Stores data as key-value pairs.

Content Delivery Network: Distributes in-demand
content to end users.

Sequencer: Generates unique IDs for events &
database entries.

Service Monitoring: Analyzes system for failures &
sends alerts.

Distributed Caching: Stores frequently accessed
data.

Distributed Messaging Queue: Decouples
messaging producers from consumers.

Publish-Subscribe System: Supports asynchronous
service-to-service communication.

Rate Limiter: Throttles incoming requests for
services.

Blob Store: Stores unstructured data.

Distributed Search: Returns relevant content for
user queries.

Distributed Logging: Enables services to log events.

Distributed Task Scheduling: Allocates resources to
tasks.

Sharded Counters: Counts concurrent read/write
requests.

« Face performance & efficiency concerns around storage

Step 4: High-level design

« Build high-level design

» Choose building blocks to meet functional
requirements

For each, identify:
» How they work
« Why they're needed
« How they integrate

o000

Distributed
Search

Load Balancers

fom Wam |

Databases Key-value Store

| om W am }

Content Delivery
Network

Service Distributed
Monitoring Caching
fom Wl

Distributed
Messaging Queue

OO0

Rate Limiter Blob Store

Distributed Distributed Task

Loggin Schedulin
fon) 99’9 Pl

Domain Name Sharded

Sequencer
System Counters

This layered visual shows dependencies between
building blocks. Blocks in lower layers support
those above.

Step 5: Apis

Translate functional requirements into
API calls

E.g.:
» Requirement: Users should be
able to access all items
« API call: GET /items

Step 6: Detailed design

« Improve high-level design

« Consider all non-functional
requirements & complete
design

Step 7: Evaluation

« Evaluate design against
requirements

« Explain trade offs & pros/cons
of different solutions

» Address overlooked design
problems

(8%) Distinctive
component/feature
Discuss a distinctive feature that
meets requirements
« E.g. Concurrency control in
high-traffic apps

*Timing varies. Best done after
completing design (E.g. Step 6 & 7)



