
Divide and Conquer Techniques for Coding Interviews

Introduction
• Overview: Divide and Conquer is an algorithmic paradigm that breaks a problem into smaller
 subproblems, solves each subproblem, and combines the results to solve the original problem.
• Importance in coding interviews: It is used for optimizing solutions where brute force is impractical
 due to high time complexity.

Common Divide and Conquer Algorithms

Key Concepts
• Divide: Continue splitting the complex problem into smaller and manageable parts until the solution
 is trivial.
• Conquer: Solve each subproblem, typically simpler than the original problem.
• Combine: Merge the results of the subproblems to form a solution to the original problem.

Problem

Solution to
Subproblem

Subproblem 1 Subproblem 2

Solution to
Subproblem 1

Solution to
Subproblem 2

Divide and Conquer Approach

Solve
Subproblem

Solve
SubproblemConquer

Combine

Divide

Algorithm: Binary Search
Explanation: Efficiently finds an element in a sorted array by repeatedly dividing the search
 interval in half.
Time Complexity: O(log n)

15 20 25 30 35 40

Lower Middle Higher

15 20 25 30 35 40

Lower Middle Higher

15 20 25 30 35 40

Lower Middle Higher

Search 20

1

Divide and Conquer Techniques for Coding Interviews

Algorithm: Merge Sort
Explanation: Divides the array into halves, sorts each half, and merges them.

Time Complexity: O(n log n)

2

38 27 43 10

38

38 27

3827

27 43

43 10

10 43

10

10 3827 43

Algorithm: Quick Sort
Explanation: Selects a pivot and partitions the array around the pivot, recursively sorting the
 subarrays.
Time Complexity: Average O(n log n), worst O(n^2)

3

27

27

38 27

10<

<=43 43<

27<<=27

<=10

43 10

10

10

10

10

38 27

38

38

38

27

43

43

43

43

Pivot

Pivot

Pivot

Algorithm: Closest Pair of Points
Explanation: Finds the closest pair in a set of points on a 2D plane using recursive division.
Time Complexity: O(n log n)

4

PL

d d
S

PR

Divide and Conquer Techniques for Coding Interviews

Algorithm: Fast Exponentiation
Explanation: Calculates large powers efficiently by repeatedly squaring the base.

Common Pitfalls and How to Avoid Them
• Ensuring recursive algorithms have correct and reachable base cases.
• Optimizing the combination step to avoid performance degradation.
• Choosing a division method that balances the workload

Time Complexity: O(log n)

5

22

21 21

22

21 21

20 2020 2020

25

21

Applications of Divide and Conquer
• Searching: Efficient search algorithms (e.g., Binary Search).
• Sorting: Quick Sort, Merge Sort for optimal sorting.
• Graphics: Image processing (e.g., Closest Pair of Points).
• Coding problems: Programming problems like “Find Median in a Data Stream,” and “Maximum
 Subarray".

Algorithm: Matrix Multiplication (Strassen’s Algorithm)
Explanation: Multiplies matrices faster than the standard method by recursively breaking
 down the matrices.
Time Complexity: O(n^2.81)

6

M1 = (A11 ��A22) � (B11 ��B22)

M6 = (A21 ��A11) � (B11 ��B12)

M7 = (A12 ��A22) � (B21 ��B22)

M3 = A11 � (B12 ��B22)

M4 = A22 � (B21 ��B11)

M2 = (A21 ��A22) � B11

M5 = (A11 ��A12) � B22

C11 = M1 ��M4 � M5 ��M7

C22 = M1 � M2 ��M3 ��M6

C12 = M3 ��M5

C21 = M2 ��M4

C =

250 260 270 280
618 644 670 696
986 1028 1070 1112
1354 1412 1470 1528

A =

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

B =

17 18 19 20
21 22 23 24
25 26 27 28
29 30 31 32

A = A11 A12
A21 A22

B = B11 B12
B21 B22

,

A11 =
1 2
5 6

A12 =
3 4
7 8

A21 =
9 10
13 14

A22 =
11 12
15 16, , ,

B11 =
17 18
21 22

B12 =
19 20
23 24

B21 =
25 26
29 30

B22 =
27 28
31 32, , ,

Divide and Conquer Techniques for Coding Interviews

Criteria

Optimal Use Cases

Approach

Performance

Time Complexity

Space Complexity

Examples

Comparison to
Divide and Conquer

Drawbacks

Divide and
Conquer

Dynamic
Programming (DP)

Greedy
Algorithms Backtracking

Comparison With Other Algorithms

Tips for Coding Interviews
Focus on classic problems like Binary Search, Merge Sort, Quick Sort.Practice Regularly

Master base cases and recursive patterns.Understand Recusion

Know how to compute time and space complexity.Analyze Complexity

Problems that can
be naturally divided
into independent
subproblems (e.g.,
searching, sorting,
optimization).

Problems with
overlapping
subproblems and
optimal substructure
(e.g., Fibonacci
Sequence, Knapsack).

Problems with the
greedy-choice
property where local
optimum leads to
global optimum (e.g.,
Activity Selection,
Huffman Coding).

Problems requiring
exploration of all
configurations with
pruning (e.g.,
N-Queens, Sudoku
Solver).

Divide the problem
into smaller
subproblems, solve
recursively, and
combine solutions.

Use memoization or
tabulation to store
results of
subproblems to
avoid redundant
computations.

Make the locally
optimal choice at
each step with the
hope of finding a
global optimum.

Explore all possible
configurations;
backtrack when
reaching an invalid
state.

Efficient when
subproblems are
independent;
reduces problem
size significantly.

Efficient for
problems with
overlapping
subproblems; avoids
exponential time
complexity.

Fast and simple for
many problems;
provides optimal or
near-optimal
solutions.

Suitable for
problems with a
large solution space;
finds all or the best
solutions.

Often logarithmic or
O(n log n) (e.g.,
Merge Sort, Quick
Sort).

Typically polynomial
(e.g., O(n^2) for LCS,
Knapsack).

Generally linear or
O(n log n) for many
problems (e.g., O(n)
for Activity Selection).

Can be exponential
in the worst case
(e.g., O(n!) for
N-Queens).

Can be higher due to
recursive calls and
storing multiple
subproblems.

Lower space with
memoization; higher
with tabulation.

Usually low as it
doesn’t store results
of subproblems.

Can be high due to
recursion and
storage of multiple
configurations.

Merge Sort, Quick
Sort, Binary Search,
Closest Pair of
Points, Strassen’s
Matrix Multiplication.

Fibonacci Sequence,
Longest Common
Subsequence,
Knapsack Problem.

Activity Selection,
Huffman Coding,
Dijkstra’s Algorithm.

N-Queens, Sudoku
Solver, Permutation
Generation.

Best when
subproblems are
independent.

More efficient than
Divide and Conquer
when subproblems
overlap.

Simpler and faster
for problems where
greedy choices yield
optimal results.

Provides a more
comprehensive
search of the
solution space,
useful for constraint
satisfaction.

Not ideal for
overlapping
subproblems;
redundant
computations
possible.

Can be overkill for
problems without
overlapping
subproblems.

Might not always
provide an optimal
solution; requires a
greedy-choice
property.

Might require
exploring a large
number of
configurations,
leading to high time
complexity.

