
Big O Notation for Coding Interviews

By comparing the efficiency of different approaches to a problem, Big O helps you write better
software and ace in coding interview problems.

What is Big O?

Time Complexity: Measures the total amount of time an algorithm takes to execute as a
function of its input size.
Space Complexity: Measures the total amount of memory or space required by an algorithm 
to execute as a function of its input size.

Big O notation measures the efficiency and performance of an algorithm by analyzing its time
and space complexity.

Constant Time: O(1)

Example: Accessing an element in an array by index

The running time does not change with the size of the input. The algorithm always takes the same
amount of time to complete.

Linear Time: O(n)

Example: Iterating through an array

The running time increases linearly with the size of the input. If the input size doubles, the running
time also doubles.

Logarithmic Time: O(log n)

Example: Binary search

The running time increases logarithmically as the input size increases. If the input size doubles,
the running time increases by a constant amount(very slowly as compared to the input size).

Quadratic Time: O(n^2)

Example: Nested loops and bubble 

The running time increases quadratically with the size of the input. If the input size doubles, the
running time increases by a factor of four.

Quasilinear Time: O(n log n)

Example: Merge sort and heap 
The running time grows in proportion to n multiplied by the logarithm of n.

Exponential Time: O(2^n)

Example: Recursive algorithms solving the traveling salesman problem

The running time doubles with each additional element in the input. If the input size increases by
one, the running time increases by a factor of two.

Factorial Time: O(n!)

Example: Generate all permutations of a string

The running time grows in proportion to the factorial of the input size, n. This complexity indicates
extremely rapid growth, making such algorithms impractical for large inputs.



Big O Notation for Coding Interviews

O(1): Excellent
O(log n): Good
O(n): Fair
O(n log n): Acceptable
O(n^2): Bad
O(2^n): Very Bad
O(n!): Worst

Visual Representation

Complexity of Common Data Operations

Complexity Classes

Big O Complexity Chart

O(2^n) O(n^2)

O(n log n)

O(n)

O(log n) , O(1)

Input Size

Ti
m

e

Worst Very bad Bad Acceptable Fair Good Excellent

O(n!)

Access

Search

Insertion

Deletion

O(1)

O(n)

O(n)

O(n)

O(n)

O(n)O(n)

O(1)

Static Data Structures

Data Structure Operation Average Case Worst Case

Array



Big O Notation for Coding Interviews

 Dynamic Data Structures

Data Structure Operation Average Case Worst Case

Singly Linked List

Access

Search

Insertion (at head)

Deletion (head)

Deletion (middle or
any position)

O(n)

O(n)

O(n)

O(n)

O(n) O(n)

O(n)

O(n)

Insertion (at tail or
any position)

O(1) O(1)

O(1) O(1)

Doubly Linked List

Access

Search

Insertion (at head)

Insertion (at tail or
any position)

Deletion (head)

Deletion (middle or
any position)

O(n)

O(n)

O(n)

O(n)

O(n) O(n)

O(n)

O(n)

O(1) O(1)

O(1) O(1)

Stack

Access

Search

Insertion (Push)

Deletion (Pop)

O(1)

O(1)

O(n)

O(n)

O(n)

O(n)

O(1)

O(1)

Dynamic Data Structures

Data Structure Operation Average Case Worst Case

Queue

Access

Search

Insertion (Enqueue)

Deletion (Dequeue)

O(n)

O(n)

O(n)

O(n)

O(1) O(1)

O(1) O(1)



Big O Notation for Coding Interviews

O(log n) O(log n)

O(log n)

O(log n)

O(log n)

O(log n)

O(log n)

O(log n)

O(log n)

O(log n)

O(log n)

O(log n)

Access

Search

Insertion

Deletion

O(log n)

O(log n)

O(log n)

O(log n)

Access

Search

Insertion

Deletion

Red-Black Tree

AVL Tree

Data Structure Operation Average Case Worst Case

Tree-Based Data Structures

O(n)

O(log n)

O(log n)

O(log n)

O(log n)

O(n)

O(n)

O(n)

O(n)

O(n)

O(n) O(n)
Binary Tree

O(n) O(n)

O(n) O(n)Access

Search

Insertion

Deletion

Access

Search

Insertion

Deletion

Binary Search Tree

Data Structure Operation Average Case Worst Case

Tree-Based Data Structures

Data Structure Operation Average Case Worst Case

Hash-Based Data Structures

Hash Table

Access

Search

Insertion

Deletion

O(1)

O(1)

O(1)

O(1)

O(n)

O(n)

O(n)

O(n)


