
Algorithms-CS101

Algorithms are a set of instructions or steps designed to perform a specific task or to solve
a particular problem. They are essential in computer science for data processing, calculations,
and other tasks.

What are Algorithms?

Algorithm Design Techniques (Definition + Applications + Algorithms)
Algorithm

Design Technique

Brute Force

Definition Applications Examples

Naive string
matching, Bubble
sort.

Simple and straightforward
method of solving problems
by trying all possible
solutions until the correct
one is found.

Finding the 
maximum element
in an array, checking
all substrings.

Divide and Conquer Merge sort,
Quicksort.

Breaking down a problem
into smaller subproblems,
solving each subproblem
independently, and
combining their solutions
to solve the original
problem.

Sorting algorithms,
binary search.

Dynamic
Programming

Fibonacci sequence,
Knapsack problem. 

Solving problems by
breaking them down
into simpler subproblems
and storing the results of
subproblems to avoid
redundant work.

Optimization
problems,
sequence alignment.

Greedy Algorithms Dijkstra's algorithm,
Prim's algorithm.

Making the locally optimal
choice at each step with
the hope of finding the
global optimum.

Optimization
problems,
scheduling.

Backtracking N-Queens problem,
Sudoku solver.

Building solutions 
incrementally and
abandoning solutions
that fail to satisfy the
constraints of the problem.

Constraint
satisfaction
problems, puzzles.

Randomized
Algorithms

Quick sort
(randomized),
Randomized
algorithms for
median finding.

Using random numbers to
make decisions during the
algorithm’s execution.

Optimization
problems,
Monte Carlo
methods.

Linear Programming Simplex algorithm,
Interior-point
methods.

Optimizing a linear
objective function
subject to linear
equality and inequality 
constraints.

Operations research,
economics.



Algorithms-CS101

Branch and Bound Traveling salesman
problem, Knapsack
problem.

Systematically enumerating
candidate solutions by
means of state-space
search.

Optimization
problems,
combinatorial
problems.

Reduction
(Transform and
Conquer)

Reducing a problem
to graph theory,
reducing a sorting
problem to a 
selection problem.

Transforming a problem
into a different version
or into another
problem entirely.

Problem-solving
strategies, proving
NP-completeness.

Minimum Spanning
Trees

Kruskal's algorithm,
Prim's algorithm.

A subset of edges in a
weighted graph that
connects all the vertices
without any cycles and
with the minimum possible
total edge weight.

Network design,
circuit design.

Classification by Design Approach (Definition + Illustration)
• Top-Down Approach 
◦ Definition: Breaking down a system into smaller subsystems to understand its compositional 

subcomponents.
◦ Illustration: Recursively solving subproblems (e.g., Quicksort).

27

27

38 27

10 <

<=43 43<

27<<=27

Pivot

<=10

43 10

10

10

10

10

38 27

38

38

38

27

43

43

43

43

Pivot

Pivot



Algorithms-CS101

Discussion on Important Algorithms
Algorithm
Selection
Sort

Definition Complexity Why When

Simple to
understand and
implement;
useful for small
datasets or
when memory
usage is a
concern.

Suitable for
small arrays or
when the cost
of swapping
elements is low.

Repeatedly
finding the
minimum
element from
the unsorted
part and
putting it at
the beginning.

O(n^2)

Insertion
Sort

Efficient for
small dataset
or nearly sorted
data; in-place
and stable sort.

Ideal for small
arrays or arrays
that are already
partially sorted.

Building a
sorted array
one element
at a time by
inserting
elements into
their correct
position.

O(n^2)

64 12 3322 13

2 4 8 9 63

2 3 4 8 69

Bubble
Sort

Easy to
implement and
understand; can
be optimized to
stop early if the
array is already
sorted.

Rarely used in
practice, mainly
for educational 
purposes or very
small datasets.

Repeatedly
swapping
adjacent 
elements if
they are in
the wrong
order.

O(n^2)

15 11 16 12 14 13

11 15 16 12 14 13

38 27 43 10

38

38 27

3827

27 43

43 10

10 43

10

10 3827 43

• Bottom-Up Approach
◦ Definition: Building a system from the smallest subsystems up to the overall system.
◦ Illustration: Combining solutions to subproblems to solve the main problem (e.g., Merge sort).



Algorithms-CS101

Breadth-
First
Search
(BFS)

Useful for
finding the
shortest path
in unweighted
graphs; explores
all neighbors
before moving
on to the next
level.

Ideal for finding
the shortest
path or
level-order
traversal
in graphs or
trees.

Exploring all
neighbors at
the present
depth before
moving on to 
nodes at the
next depth
level.

O(V + E)
0

21 3

4 5 6 7

Output: 0, 1, 2, 3, 4, 5, 6, 7

Layer 1

Layer 2

Layer 0
Source Node

Depth-
First
Search
(DFS)

Explores as
deep as possible
before
backtracking; 
useful for
pathfinding 
and topological 
sorting.

Suitable for
scenarios where
you need to 
explore all
possible paths,
such as maze
solving or
topological
sorting.

Exploring as
far as possible
along each
branch before 
backtracking.

O(V + E)
0

21 3

4 5 6 7

Output: 0, 1, 4, 5, 2, 6, 3, 7

Source Node

Binary
Search

Extremely
efficient for
searching in
sorted arrays;
O(log n) time 
complexity.

Ideal for
searching in
large, sorted 
datasets where
quick lookup
times are
essential.

14 19 26 31 33 35
0 1 2 3 4 5 6

27

Left Sub-Array Right Sub-Array

Middle value

Repeatedly
dividing the
search interval
in half and 
eliminating
the half that
does not
contain the
target value.

O(log n)

Merge
Sort

Efficient and
stable sort with
a predictable
O(n log n) time
complexity.

Suitable for 
large datasets,
especially when
stability is
required or
when data
cannot fit into
memory.

Dividing the
array into
halves, sorting
each half, and
merging the
sorted halves.

O(n log n) 4

4 2

2

2 4

Quicksort Highly efficient
for large 
datasets;
average-case
time complexity
is O(n log n);
in-place sort.

Preferred for
general-purpose
sorting,
particularly
when space
is limited, and
average
performance
is critical.

Partitioning
the array into
two parts,
sorting each
part, and
combining
them.

O(n log n)
on
average

2 7 3 9 1 6 8 4

pivot

72 1 3 4 6 8 9

pivot >4<4

Tower of
Hanoi

Classic problem
for
understanding
recursion and
algorithmic 
problem-solving.

Primarily used
for educational
purposes to
teach recursion.

Moving disks
from one rod
to another,
following
specific rules.

O(2^n)



Algorithms-CS101

Inorder Provides nodes
in non-
decreasing 
order for binary
search trees;
useful for
retrieving sorted
data.

Useful for
binary search
trees and for
applications
where nodes 
need to be
processed in
sorted order.

1

2 3

4 5 6 7

4 2 5 1 6 3 7
Inorder Traversal

Traverse the
left subtree,
visit the root
node, then
traverse the
right subtree.

O(n)

Preorder Used to create a
copy of the tree
or to get a prefix
expression of
an expression
tree.

Useful for prefix
notation
expressions
and when you
need to process
the root node
before the
subtrees.

1

2 3

4 5 6 7

1 2 4 5 3 6 7
Preorder Traversal

Visit the root
node, then
traverse the
left subtree,
followed by
the right
subtree.

O(n)

Postorder Used to delete
or free nodes
in a tree;
useful for
postfix
expression 
of an expression
tree.

Useful for
deleting trees
and for
applications
where nodes
need to be
processed after
their subtrees.

1

2 3

4 5 6 7

4 5 2 6 7 3 1
Postorder Traversal

Traverse the
left subtree,
then the right
subtree, and
visit the root
node last.

O(n)


